
A Low Power Attention and Softmax Accelerator
for Large Language Models Inference

Jeong-Hyun Kim1, Chan-Hoon Kim2, Soo-Min Rho3, Ki-Seok Chung4†

Department of Electronic Engineering, Hanyang University
Seoul, Korea

{1hanagod2015, 2kch1103, 3smrho, 4kchung}@hanyang.ac.kr
†Corresponding author.

Abstract—Transformer-based models, essential for high-
performing Large Language Models (LLMs), surpass traditional
Deep Neural Networks but require substantial computational
resources. Therefore, more efficient transformer algorithms and
accelerators are required to reduce the computational cost and
power consumption of LLMs. We observed that as the sequence
length increases, softmax operations, which are the key operation
of the transformer self-attention mechanism, become the major
bottleneck. In this paper, we propose Cross-Road Softmax, an
optimized algorithm designed for the softmax operation within
the attention layer, specifically tailored for inference in LLMs.
Our software experiment was conducted on 8 Natural Language
Processing benchmarks for evaluation. Furthermore, we design
a Cross-Road Accel using the proposed Cross-Road Softmax
that accelerates softmax function of the self-attention layer. We
implement Cross-Road Accel in RTL and synthesize it with Syn-
opsys Design Compiler using Nangate 15nm open cell library to
obtain power and area statistics. In summary, on average, Cross-
Road Accel achieves an approximately 3.5× increase in energy
efficiency compared to state-of-the-art transformer accelerators.

Index Terms—AI accelerator, Low Power Design, Algorithm-
Hardware Co-Design, Transformer, Softmax, LLMs, NLP

I. INTRODUCTION

Transformer-based Large Language Models (LLMs) [1]
have shown breakthrough performance in various fields of
Deep Neural Networks. One of the keys to the success is the
self-attention mechanism. We observed that the computational
cost and power consumption of the self-attention mechanism
vary with sequence length. For lengths under 1K, linear
operations dominate in the self-attention mechanism. However,
with recent models supporting lengths over 1K, non-linear
operations have become the primary bottleneck. We observe
that as sequence length increases, the softmax computation
becomes a critical bottleneck. To address this, we propose
Cross-Road Softmax, which computes the softmax function
using selective application of one-hot encoding and a base-
2 softmax method. Our One-Hot Softmax design leverages
one-hot encoding to skip the softmax computation, utilizing
softmax’s tendency to assign dominant probabilities to outliers
within a vector. This allows skipping the softmax operation
altogether with an appropriate threshold, identified through
experiments with well-known LLMs and tasks [2], [3]. For
vectors that cannot skip the softmax operation, we introduce
the Base-2 Softmax, which transforms the base to 2 for

efficient computation. The Cross-Road Softmax combines both
One-Hot Softmax and Base-2 Softmax methods. Moreover, we
designed Cross-Road Accel, a hardware accelerator employing
the Cross-Road Softmax method, to confirm the advantages of
our proposed approach. We conducted software and hardware
experiments to evaluate the methods and designs.
In summary, the contributions are listed as follows:

• We propose Cross-Road Softmax, a novel method for
LLM inference that operates in dual modes: One-Hot
Softmax and Base-2 Softmax, tailored to the characteris-
tics of LLMs and softmax. Refer to Section III-A.

• We profiled well-known benchmarks to characterize soft-
max in LLMs and determine the optimal threshold for
our method. Section III-B will address the details.

• We propose a hardware-friendly attention accelerator,
Cross-Road Accel that includes Cross-Road Softmax.
Compared with the SOTA accelerators, Cross-Road Accel
achieves an average improvement of 3.5× in energy
efficiency. Sections IV and V-C will address the details.

II. BACKGROUND AND MOTIVATION

A. Transformer and Attention Mechanism

Transformer models mainly consist of stacked encoder or
decoder blocks [1]. Each encoder block has two stages: the
Multi-head Self-attention (MHA) layer and the Position-wise
Feed-forward Network (FFN) layer. The MHA layer exe-
cutes attention mechanism in parallel across multiple heads,
each consisting of single-head attention blocks. These blocks
generate Query (Q), Key (K), and Value (V ) matrices by
multiplying input tokens with pre-trained weights. The Scaled
Dot-product Attention mechanism then calculates attention
scores by multiplying Q with the transposed K, which are then
normalized and converted into probabilities using the softmax
function. Softmax is essential for transforming input values
into probabilities.

softmax(xi) =

(
exi∑k−1
i=0 exi

)
(1)

As shown in Equation 1, the softmax function normalizes the
exponentials of inputs to compute probabilities. It is essential
in the attention mechanism, converting the correlation
between Q and K into a probability matrix, known as the



Fig. 1. Runtime breakdown of Transformer operations according to sequence
length.

attention distribution. The final result of attention is obtained
by multiplying the distribution with the V matrix, known as
the context. Finally, all heads are concatenated to match the
input dimension of the MHA layer.

B. Motivations

Runtime breakdown of Transformer layers: In the earlier
LLMs, the token lengths were less than 1K in most cases.
When the token length is less than 1K, the computational
load for QKV Generation and FFN operations except for
attention is dominant in most LLMs. However, the number of
parameters and the max sequence lengths that LLMs should be
able to support increase rapidly. As the max sequence length
that can be handled by an LLM far exceeds 1K, the load of
attention has grown dramatically. Therefore, it becomes very
crucial to accelerate the attention computation. To understand
the computational bottleneck among all components with the
attention layer, performance profiling was carried out. Our pro-
filing results confirmed that as the sequence length increases,
the computational load of the softmax function within the
attention layer dramatically increases. Figure 1 depicts that
the computational load of softmax in LLMs is increasing. The
x-axis represents sequence length, while the y-axis denotes the
runtime breakdown.

Limitations of conventional hardware: Therefore, many
studies have attempted to implement efficient and fast hard-
ware to compute the softmax function. However, since softmax
has non-linear features that divide the power of an irrational
number e, it is challenging to implement it in hardware. As
a result, many existing hardware architectures utilize LUT or
CORDIC to implement the exponential function. However, the
LUT method requires substantial memory for high precision,
which consumes more power than logic circuit implementa-
tion. The CORDIC method is quite accurate when the iteration
count is high. On the other hand, the latency increases sharply
as the iteration count gets higher. In this paper, we propose a
novel method of computing the softmax function.

III. CROSS-ROAD ACCEL

A. Cross-Road Softmax

We introduce Cross-Road Softmax, a novel method of com-
puting softmax. In LLMs inference, we only need the relative
probability from the softmax output, so exact probability is
unnecessary if one value is significantly larger than the others.
In the proposed Cross-Road Softmax, the softmax results are
generated from either of the following two modules.

The One-hot Softmax module outputs a vector with a
single 1 indicating the highest value, simplifying softmax
computation using one-hot encoding. This method is used
when there’s a significant gap between the highest and second-
highest values, determined by a pre-defined threshold. Ap-
plying one-hot encoding improves performance and reduces
power consumption by eliminating the need for full softmax
computation. Therefore, setting an appropriate threshold is
crucial for optimal performance and efficiency. On the other
hand, if the difference between the highest and second values
does not surpass the threshold, One-Hot Softmax will not be
operated. Instead of One-Hot Softmax, the Base-2 Softmax
module will be run at that point. The Base-2 Softmax module
is designed based on a hardware-friendly approach by trans-
forming the nonlinear function ex in the softmax. The entire
process of the Cross-Road Softmax is outlined in Algorithm
1, and the architecture is depicted in Figure 3.

Algorithm 1: Cross-Road Softmax

1 Input: x (Input vector, INT16)
2 Output: dist (Distribution)
3 Parameter: k (# of elements in the vector x),
4 th (Threshold value)

5 1st, 2nd ← Detect(x)
6 if 1st − 2nd ≥ th then
7 // One-Hot Softmax operation
8 dist[index(1st)]← 1.0
9 dist[index(else)]← 0.0

10 else
11 // Base-2 Softmax operation

12 dist←
(

2round(xi·1.4375)∑i−1
k=0 2round(xi·1.4375)

)
13 end

B. Determining the Threshold

As detailed in Section III-A and lines 7-9 of Algorithm 1,
One-Hot Softmax uses a threshold to skip computations. The
threshold value is crucial, relying on a dominant probability in
the input vector. Even a small difference between the highest
and second-highest values impacts the probability distribution.
We experimented with BERT-Tiny and 10% samples from
GLUE benchmarks [2] to determine the ratio of vectors
exceeding the threshold and skipping softmax for power
efficiency. We compared naive softmax and tested thresholds
from 1 to 4 to find the optimal value.



TABLE I
ACCURACY FOR VARIOUS THRESHOLDS ON BERT-TINY USING 10% OF

THE GLUE BENCHMARK SAMPLES.

Threshold Average Ratio over Threshold (%) Average Accuracy

th = 1 43.87 0.624
th = 2 32.27 0.646
th = 3 15.73 0.645
th = 4 5.49 0.644
baseline 0 0.641

The range of the experimental group is justified because the
threshold value as 0 makes the algorithm meaningless. More-
over, the value of 5 leads to a near-zero threshold exceeding the
ratio, substantially reducing the softmax’s acceleration. Table
I represents the relation between the ratio and the accuracy
drop according to threshold value in LLMs. In Table I, setting
the threshold value to 1 results in a significant accuracy drop
due to excessive skipping of necessary softmax computations.
However, with a threshold value of 2, approximately 32.27%
of the vectors can skip softmax computation without signifi-
cant accuracy loss. As a result, 2 is the best threshold in the
case of Table I. In general cases, it is also necessary to apply
heuristic methods to determine the optimal threshold value.

IV. HARDWARE IMPLEMENTATION

A. Overall Architecture

Figure 2 illustrates the overall system architecture and
Cross-Road Accel. As depicted in Figure 2, we implement a
hardware system named Core Wrapper, composed of Direct
Memory Access (DMA), SRAM, Core Controller, Scheduler,
and Cross-Road Accel. Within the Core Wrapper, Core Con-
troller is responsible for managing and controlling the system
state and Scheduler facilitates read/write data from/to the
SRAMs, which have a capacity of 16KB. The Cross-Road
Accel receives Q,K, V and valid signals from the Scheduler
as inputs and accelerates the Scaled Dot-Product Attention
operation. In Cross-Road Accel, two 8x8 Systolic Arrays
that utilize the output stationary are implemented. The systolic
arrays are pipelined to improve the computation throughput.
Additionally, the Dispense Controller Module pre-processes
the output of Cross-Road Softmax, while the Post Processing
Module post-processes the final output, the context.

B. Cross-Road Softmax Implementation

The Cross-Road Softmax module consists of four sub-
blocks: Detect Score, Row-Wise Top-2, One-Hot Softmax, and
Base-2 Softmax. The Detect Score block and Row-Wise Top-
2 block are responsible for preprocessing in the Cross-Road
Softmax module. One-Hot Softmax activates upon receiving
the flag from Row-Wise Top-2. It assigns 1.0 (16’hffff) as
the attention distribution (AD) to the index stored in the Idx
Pointer, representing the largest value, while all other outputs
are set to 0 (16’h0000). This operation assigns maximum
probability to the largest input’s index and zero to others,
completing in one cycle. On the other hand, the Base-2

TABLE II
ACCURACY COMPARISON BETWEEN THE SW IMPLEMENTATION AND OUR

HW IMPLEMENTATION

GLUE Task BERT-TINY
(Base)

BERT-TINY
(Ours)

BERT-LARGE
(Base)

BERT-LARGE
(Ours)

COLA 0 0 0.62 0.608
MNLI 0.65 0.659 0.861 0.862
MNLI-MM 0.66 0.663 0.863 0.863
MRPC 0.665 0.683 0.857 0.858
QNLI 0.773 0.77 0.926 0.926
RTE 0.588 0.592 0.693 0.7
SST-2 0.809 0.799 0.93 0.93
STS-B 0.533 0.529 0.888 0.887
WNLI 0.436 0.478 0.45 0.42

Softmax block operates by storing the results of shift&add
and bit slice operations in a buffer for the divide operation.
These operations are performed in parallel, maintaining a
difference of an 8x8 size from the PE array. When the Base-2
Softmax flag is generated, a division operation is performed,
requiring cycles equal to the maximum sequence length (e.g.,
128 cycles for a sequence length of 128). However, if the One-
Hot Softmax flag is on, the Base-2 Softmax skips the division
and flushes the buffer to save energy.

V. EVALUATION

A. Experimental Setup

Two types of evaluation were conducted: (1) accuracy
degradation of the hardware implementation compared to
software and (2) hardware performance in terms of latency,
power consumption, and area. To evaluate accuracy degrada-
tion, we implemented two well-known LLM models, BERT-
Tiny with 2 layers and BERT-Large [3] with 24 layers. The
implementation of Cross-Road Softmax uses PyTorch, Hug-
ging Face, CUDA, and an NVIDIA GeForce RTX 3090 GPU.
Accuracy measurements were also performed using PyTorch.
Cross-Road Accel was implemented using Verilog HDL, with
functional verification conducted using Xilinx’s Vivado XSIM
and APIs. Similar to previous research in transformers, our
design predominantly involves multiply-accumulate (MAC)
operations. Therefore, we calculated the throughput, com-
monly named effective throughput, by measuring the number
of cycles for MAC operations [4].

B. Software Evaluation

Experiments using eight tasks from the GLUE Benchmark
[2] show that the hardware implementation of Cross-Road
Softmax results in negligible accuracy drops or slight improve-
ments, as shown in Table II. For the MNLI task, the largest in
GLUE, there is no accuracy drop or up to a 3% improvement
in the BERT-TINY and BERT-LARGE [3] models.

C. Hardware Evaluation

The hardware implementation was synthesized using Syn-
opsys Design Compiler with the Compile-Ultra option and
the NanGate 15nm cell library. Cross-Road Accel was eval-
uated on throughput, power consumption, and circuit area.
Throughput, defined as total MAC operations divided by



Fig. 2. Architecture of the overall system and Cross-Road Accel.

Fig. 3. Architecture of the Cross-Road Softmax module.

processing time [4], is approximately 1.29 TOPS at 2GHz.
Synopsys Primetime verified no timing violations at this
frequency. Cross-Road Accel consumes 283.47mW of power,
and it achieves a throughput of 1.29TOPS, and it occupies
an area of 37728um2. Cross-Road Accel achieved an average
energy efficiency of approximately 3.5× better than that of
well-known previous works [5]–[7]. Evaluation results are
summarized in Table III.

TABLE III
COMPARISON OF PRIOR TRANSFORMER ACCELERATORS

SpAtten [5] ELSA [6] FACT [7] Ours

Library[nm] 40 40 28 15
Frequency[GHz] 1 1 0.5 2
MAC Units 1024 528 - 512
Power[mW] 2600 969 333.07 283.47
Throughput[TOPs] 1.61 1.09 0.928 1.29
Energy Efficiency[TOPs/W] 0.62 1.12 4.38 4.55

VI. CONCLUSION

In this paper, we propose Cross-Road Accel, which signifi-
cantly reduced the computational cost of the softmax operation
in self attention mechanism. The key to reducing computa-
tional cost is to selectively skip the softmax computation under
certain conditions. For necessary softmax computations, we

propose a more efficient hardware design. We experimented
with Cross-Road Softmax in LLMs, but our method can
be applied to any models and tasks utilizing softmax. In
conclusion, the proposed hardware design, Cross-Road Accel
achieves 3.5× better energy efficiency on average compared
to existing SOTA transformer accelerators.

ACKNOWLEDGMENT

This work was supported by Institute of Information com-
munications Technology Planning Evaluation (IITP) grant
funded by the Korea government(MSIT) (No. 2022-0-00153,
Development of O-RU for in-building based on AI network
management using beamforming path)

REFERENCES

[1] Ashish Vaswani et al. “Attention is All you Need,” In Advances in
Neural Information Processing Systems 30: Annual Conference on
Neural Information Processing Systems 2017, December 4-9, 2017,
Long Beach, CA, USA, pages 5998–6008.

[2] Alex Wang et al. “GLUE: A Multi-Task Benchmark and Analysis
Platform for Natural Language Understanding,” In Proceedings of the
2018 EMNLP Workshop BlackboxNLP: Analyzing and Interpreting
Neural Networks for NLP, pages 353–355, November 2018. Association
for Computational Linguistics. URL https://aclanthology.org/W18-5446,
doi: 10.18653/v1/W18-5446.

[3] Jacob Devlin, Ming-wei Chang, Kenton Lee, and Kristina Toutanova
“BERT:Pre-training of Deep Bidirectional Transformers for Language
Understanding,” Conference of the North American Chapter of the As-
sociation for Computational Linguistics: Human Language Technologies
(NAACL-HLT), vol. 1. pp.4171–4186, 2019.

[4] Chang Gao, Daniel Neil, Enea Ceolini, Shih-Chii Liu, and Tobi Del-
bruck. “DeltaRNN: A Power-efficient Recurrent Neural Network Accel-
erator,” In Proceedings of the 2018 ACM/SIGDA International Sympo-
sium on Field-Programmable Gate Arrays (FPGA ’18), pages 21–30,
2018. Association for Computing Machinery. ISBN 9781450356145.
doi: 10.1145/3174243.3174261.

[5] Hanrui Wang, Zhekai Zhang, and Song Han. “SpAtten: Efficient
Sparse Attention Architecture with Cascade Token and Head Prun-
ing,” In 2021 IEEE International Symposium on High-Performance
Computer Architecture (HPCA), pages 97-110, March 2021. doi:
10.1109/HPCA51647.2021.00018.

[6] Tae Jun Ham et al. “ELSA: Hardware-Software Co-design for
Efficient, Lightweight Self-Attention Mechanism in Neural Net-
works,” In 2021 ACM/IEEE 48th Annual International Sympo-
sium on Computer Architecture (ISCA), pages 692-705, 2021. doi:
10.1109/ISCA52012.2021.00060.

[7] Yubin Qin et al. “FACT: FFN-Attention Co-optimized Transformer
Architecture with Eager Correlation Prediction.” In Proceedings of the
50th Annual International Symposium on Computer Architecture (ISCA
’23), Orlando, FL, USA, 2023. Association for Computing Machinery.
ISBN 9798400700958. doi: 10.1145/3579371.3589057.


